colour-2.3.5: A model for human colour/color perception
Safe HaskellSafe-Inferred
LanguageHaskell98

Data.Colour.RGBSpace

Description

An RGBSpace is characterized by Chromaticity for red, green, and blue, the Chromaticity of the white point, and it's TransferFunction.

Synopsis

Documentation

data Colour a Source #

This type represents the human preception of colour. The a parameter is a numeric type used internally for the representation.

The Monoid instance allows one to add colours, but beware that adding colours can take you out of gamut. Consider using blend whenever possible.

Instances

Instances details
ColourOps Colour Source # 
Instance details

Defined in Data.Colour.Internal

Methods

over :: Num a => AlphaColour a -> Colour a -> Colour a Source #

darken :: Num a => a -> Colour a -> Colour a Source #

AffineSpace Colour Source # 
Instance details

Defined in Data.Colour.Internal

Methods

affineCombo :: Num a => [(a, Colour a)] -> Colour a -> Colour a Source #

Eq a => Eq (Colour a) Source # 
Instance details

Defined in Data.Colour.Internal

Methods

(==) :: Colour a -> Colour a -> Bool #

(/=) :: Colour a -> Colour a -> Bool #

(Fractional a, Read a) => Read (Colour a) Source # 
Instance details

Defined in Data.Colour

(Fractional a, Show a) => Show (Colour a) Source # 
Instance details

Defined in Data.Colour

Methods

showsPrec :: Int -> Colour a -> ShowS #

show :: Colour a -> String #

showList :: [Colour a] -> ShowS #

Num a => Semigroup (Colour a) Source # 
Instance details

Defined in Data.Colour.Internal

Methods

(<>) :: Colour a -> Colour a -> Colour a #

sconcat :: NonEmpty (Colour a) -> Colour a #

stimes :: Integral b => b -> Colour a -> Colour a #

Num a => Monoid (Colour a) Source # 
Instance details

Defined in Data.Colour.Internal

Methods

mempty :: Colour a #

mappend :: Colour a -> Colour a -> Colour a #

mconcat :: [Colour a] -> Colour a #

RGB Tuple

data RGB a Source #

An RGB triple for an unspecified colour space.

Constructors

RGB 

Fields

Instances

Instances details
Functor RGB Source # 
Instance details

Defined in Data.Colour.RGB

Methods

fmap :: (a -> b) -> RGB a -> RGB b #

(<$) :: a -> RGB b -> RGB a #

Applicative RGB Source # 
Instance details

Defined in Data.Colour.RGB

Methods

pure :: a -> RGB a #

(<*>) :: RGB (a -> b) -> RGB a -> RGB b #

liftA2 :: (a -> b -> c) -> RGB a -> RGB b -> RGB c #

(*>) :: RGB a -> RGB b -> RGB b #

(<*) :: RGB a -> RGB b -> RGB a #

Eq a => Eq (RGB a) Source # 
Instance details

Defined in Data.Colour.RGB

Methods

(==) :: RGB a -> RGB a -> Bool #

(/=) :: RGB a -> RGB a -> Bool #

Read a => Read (RGB a) Source # 
Instance details

Defined in Data.Colour.RGB

Show a => Show (RGB a) Source # 
Instance details

Defined in Data.Colour.RGB

Methods

showsPrec :: Int -> RGB a -> ShowS #

show :: RGB a -> String #

showList :: [RGB a] -> ShowS #

uncurryRGB :: (a -> a -> a -> b) -> RGB a -> b Source #

Uncurries a function expecting three r, g, b parameters.

curryRGB :: (RGB a -> b) -> a -> a -> a -> b Source #

Curries a function expecting one RGB parameter.

RGB Gamut

data RGBGamut Source #

An RGBGamut is a 3-D colour “cube” that contains all the colours that can be displayed by a RGB device. The “cube” is normalized so that white has luminance 1.

Instances

Instances details
Eq RGBGamut Source # 
Instance details

Defined in Data.Colour.RGB

Read RGBGamut Source # 
Instance details

Defined in Data.Colour.RGB

Show RGBGamut Source # 
Instance details

Defined in Data.Colour.RGB

mkRGBGamut Source #

Arguments

:: RGB (Chromaticity Rational)

The three primaries

-> Chromaticity Rational

The white point

-> RGBGamut 

An RGB gamut is specified by three primary colours (red, green, and blue) and a white point (often d65).

inGamut :: (Ord a, Fractional a) => RGBGamut -> Colour a -> Bool Source #

Returns True if the given colour lies inside the given gamut.

RGB Space

data TransferFunction a Source #

A transfer function is a function that typically translates linear colour space coordinates into non-linear coordinates. The transferInverse function reverses this by translating non-linear colour space coordinates into linear coordinates. It is required that

transfer . transferInverse === id === transferInverse . inverse

(or that this law holds up to floating point rounding errors).

We also require that transfer is approximately (**transferGamma) (and hence transferInverse is approximately (**(recip transferGamma))). The value transferGamma is for informational purposes only, so there is no bound on how good this approximation needs to be.

Constructors

TransferFunction 

Fields

data RGBSpace a Source #

An RGBSpace is a colour coordinate system for colours laying inGamut of gamut. Linear coordinates are passed through a transferFunction to produce non-linear RGB values.

mkRGBSpace :: RGBGamut -> TransferFunction a -> RGBSpace a Source #

An RGBSpace is specified by an RGBGamut and a TransferFunction.

linearRGBSpace :: Num a => RGBGamut -> RGBSpace a Source #

Produce a linear colour space from an RGBGamut.

rgbUsingSpace :: Fractional a => RGBSpace a -> a -> a -> a -> Colour a Source #

Create a Colour from red, green, and blue coordinates given in a general RGBSpace.

toRGBUsingSpace :: Fractional a => RGBSpace a -> Colour a -> RGB a Source #

Return the coordinates of a given Colour for a general RGBSpace.